Lecture 1: Fundamentals of probability

School of Mathematical Sciences, Xiamen University
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1. Elementary probabilities

e The probability space: (2, B,IP). Here,  is an abstract set called
the sample space. The set B (a o-algebra) is a collection of subsets
of Q, satisfying the following conditions:

(i) Qe B, and if A € B, then Q\ A € B,

(ii) if Ay, As,... € B, then U;.Ozl Aj e B.

We call the set B the event space, and the individual sets in it are
referred to as events. The probability measure P is a mapping

P:B— R, P(FE)=probability of E, E € B,

that must satisfying the following conditions:
(i) P(Q2) =1, and for all E € B,0 <P(F) <1,
(i) if Aj € B, j =1,2,... with A; N Ay = () whenever j # k, then

P(UZ, 4)) = 22721 P(4)).
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o It follows from the definition that
P(Q\ A) =1-P(A),

which implies that P() = 0. Moreover, if Ay, A2 € B and
A1 C Ay C Q, then
P(A;) < P(Ag).

o Two events, A and B, are independent, if
P(AN B) =P(A)P(B).

o The conditional probability of A given B is the probability that A
happens provided that B happens,

P(AN B)

P(A|B) = ~5rp

assuming that P(B) > 0.

Exercise: Prove that P(A | B) < 1.
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o It follows from the definition of independent events that, if A and
B are mutually independent, then

P(A| B)=P(A), P(B|A) =P(B).

Vice versa, if one of the above equalities holds, then by the
definition of conditional probabilities A and B must be
independent.

o Bayes’ formula for elementary events.

Assume that P(A) > 0 and P(B) > 0. From

PAIB) = T and BB 4) =g
we obtain P(A | B)P(B)
PIBIA) =30
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2. Probability distributions and densities
o Given a sample space (2, a real valued random variable X is a

mapping
X:Q =R,

which assigns to each element of Q a real value X (w), such that for
every open set A C R, X~1(A) € B. (X is a measurable function.)
We call z = X(w), w € Q, a realization of X.

e For each A C R, we define

px(A) =P(X HA) =P{weQ: X(w) € A},

and call px the probability distribution of X, i.e., ux(A) is the
probability of the event {w € Q: X(w) € A}. The probability
distribution pux (A) measures the size of the subset of 2 mapped
onto A by the random variable X.
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o We only consider simple cases, meaning that there exists a
function, the probability density mx of X, such that

/Lx(A):/Aﬂx(zL’)d(E.

A function is a probability density if it satisfies the following two
conditions:
X (LL‘) > Oa

/Rﬂx(x)dm .Y

Any function satisfying the above conditions can be viewed as a
probability density of some random variable.
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e The cumulative distribution function (cdf) of a real-valued random
variable is defined as

T

Ox(x) = / nx(2")da’ = P{X < z}.

—00

Observe that ®x(z) is non-decreasing, and it satisfies

lim ®x(z) =0, lim &x(z)=1
T—r—00 T—00
@ The definition of random variables can be generalized to cover
multidimensional state spaces. Given two real-valued random
variables X and Y, the joint probability distribution defined over
Cartesian products of sets is

pxy(Ax B)=P(X YA NnY YB))=P{X € A,Y € B},

the probability of the event that X € A and, at the same time,
Y € B, where A, B C R.
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o Assuming that the probability distribution can be written as an
integral of the form

pxy (A x B) = // xy (x,y)dzdy,
AxB

the non-negative function 7wxy defines the joint probability density
of the random variables X and Y. We may define a
two-dimensional random variable,

_ X 2
Z—[Y].QHR,

and by approximating general two-dimensional sets by unions of
rectangles, we may write

P{Z c BCR?*} = //B mxy (z,y)dzdy = /sz(z)dz,

where we used the notation wxy (z,y) = mz(z), and the integral
with respect to z is the two-dimensional integral, dz = dxdy.
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@ More generally, we define a multivariate random variable as a
measurable mapping

X1
X=|:]:Q—=R",
Xn

where each component X; is a real-valued random variable. The
probability density of X is the joint probability density

T =TX1XqXp + R" — R+
of its components, satisfying
P{X € B} = ux(B) = / mx(x)dr, B CR"
B
@ The joint probability density wxy of two multivariate random

variables X : Q@ — R" and Y : Q — R™ can be defined in the space
R™™ analogously.
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@ The random variables X € R" and Y € R™ are independent if

wxy(x,y) = mx (z)7y (y),

in agreement with the definition of independent events. This
formula gives us also a way to calculate the joint probability
density of two independent random variables.

o Given two not necessarily independent random variables X € R"
and Y € R™ with joint probability density wxy (x,y), the marginal
density of X is the probability of X when Y may take on any
value,

Tx(x) = /m mxy (7, y)dy.

In other words, the marginal density of X is simply the probability
density of X without any thoughts about Y. The marginal of Y is
defined analogously by the formula

Ty (y) = /nﬂxy(x,y)dx.
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e Consider the last formula, and assume that 7y (y) # 0. Dividing
both sides by the scalar my (y) gives the identity

Ty (y)

Since the integrand is a non-negative function, it defines a
probability density for X, for fixed y. We define the conditional
probability density of X given Y,

7TXY($,y)

Wy(y) ) WY(y) 7é 0.

T X|Y(l‘ ly) =
With some caution, and in a rather cavalier way, one can interpret
Tx|y as the probability density of X, assuming that the random
variable Y takes on the value Y =y.
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@ The conditional density of Y given X is defined similarly as

7TXY($7 y)

(@) mx(z) # 0.

™ Y|X(y | z) =
Observe that the symmetric roles of X and Y imply that

mxy (z,y) = mx)yv (@ | Y)Yy (y) = my|x (¥ | 2)7x (),

leading to the important identity known as Bayes’ formula for
probability densities,
7TY|X(Z/ | 2)7x ()

Ty (y)

7TX|Y($ ly) =
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3. Change of variables in probability densities

o Assume that we have two real-valued random variables X, Z that
are related to each other through a functional relation

X =¢(2),

where ¢ : R — R is a one-to-one mapping. For simplicity, assume
that ¢ is strictly increasing and differentiable, so that ¢/(z) > 0. If
the probability density function mx of X is given, what is the
corresponding density 7wz of Z7

First, note that since ¢ is increasing, for any values a < b, we have
a< Z<b ifand only if @’ = ¢(a) < ¢(Z) =X < ¢(b) =V,

therefore
P{d < X <V} =P{la< Z < b}.
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Equivalently, the probability density of Z satisfies

/a b mz(2)dz = / b mx (z)dz.

Performing a change of variables in the integral on the right,

dz( z)dz,

[ waee = [Caxoen e

This holds for all a and b, and therefore we arrive at the
conclusion that

we obtain
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o In the derivation above, we assumed that ¢ was increasing. If it is
decreasing, the derivative is negative. In general, since the density
needs to be non-negative, we write

dg

m2(2) = mx(8(2)) | 5

).

e The above reasoning for one-dimensional random variables can be
extended to multivariate random variables as follows. Let X € R"
and Z € R™ be two random variables such that

X =9¢(2),

where ¢ : R — R" is a one-to-one differentiable mapping.
Consider a set B C R", and let B’ = ¢(B) C R™ be its image in
the mapping ¢. Then we may write

/B mz(2)dz = / mx(@)de,
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e We perform the change of variables © = ¢(z) in the latter integral,

remembering that

dz = |det(D¢(z))|dz,

where D¢(z) is the Jacobian of the mapping ¢,

9%1
0z1
Do(z) = |
Ofn
0z1

9¢1
Ozn

c Rn Xn ,
O¢n
Ozn

and its determinant, the Jacobian determinant, expresses the local
volume scaling of the mapping ¢. Occasionally, the Jacobian
determinant is written in a suggestive form to make it formally
similar to the one-dimensional equivalent,

9 _
0z

Lecture 1

det(Do(2)).
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o With this notation,

/B ma()ds = [ my(a)de = /B 7 (6(2))

for all B C R™, and we arrive at the conclusion that

9¢
0z

o¢
& dZ

m2(2) = mx((2))

This is the change of variables formula for probability densities.
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4. Expectation

e Given a random variable X € R with probability density 7x, its
expected value, or mean, is defined as

E(X)=7= /Rmrx(x)dﬂc eR.

o Given a random variable X € R" with probability density mx, and
a function f : R™ — R, we define the ezpectation of f(X) as

E(f(X)) = . f(@)mx (z)de.
Exercise: If two random variables X and Y are independent then
E(XY)=E(X)E(Y).
Linearity: for any random variables X and Y, and any A € R,

E(X +Y)=E(X)+E(Y), EM\X)=AE(X).
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o Given a random variable X € R™ with probability density mx, the
mean of X is the vector in R",

or, component-wise,
z; :/ zjrx(x)der e R, 1<j5<n.
Exercise: Prove that the jth component of the expectation of a

multivariate random variable X € R" can be calculated by using
the corresponding marginal density. That is to say,

Tj = /Rxﬂxj(ﬂfj)dxj =E(X;), 1<j<n
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4.1 Markov’s inequality

o Let X be a non-negative random variable. For any a > 0,
E(X
P{X >a} < M
o

Proof. For any a > 0, define the following function

1, ifzx>a,
0, otherwise.

)=

Then f(x) < z/a, which yields E(f(X)) < E(X)/a. It follows
from

E(f(X)=1-P{X>a}+0-P{X <a}=P{X >a}
that

E(X)

P{X >a} <
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4.2 Conditional expectation

o Given two random variables X € R™ and Y € R, we define

BX 19) = [ amxyle] y)de.

e Compute the expectation of X via its conditional expectation:

E(X) = /n rrx(r)dr = /n T (/m WXY(x,y)dy> dx
= [ ([ mavtelwm hay) as
= /m (/Rn 177FX|Y(1‘ | y)d$> Ty (y)dy

— [ B yy )y = BEX | ).

This is the law of total expectation: E(X) = E(E(X |Y)).
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5. Variance and covariance

@ The variance of the random variable X is the expectation of the
squared deviation from the expectation,

Var(X) = E(X = 7)2) = 0% = / (z — 7)2mx (2)da.
R
The square root ox of the variance is the standard deviation of X.
Obviously, it holds Var(X) = E(X?) — 72 < E(X?).
o The kth moment of a probability density function is defined as

E(X —T)F) = /(:U —7)*nx(z)dz.
R
The skewness and the kurtosis of the probability density are

—_7)3 —7)*
o) = BP0 B )
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@ The covariance of two random variables X and Y is defined as
Cov(X,Y) = E((X —7)(Y — 7).
X and Y are said to be uncorrelated if Cov(X,Y) = 0.
o If the random variables X and Y are independent, then

Cov(X,Y)=0 and Var(X +Y) = Var(X) + Var(Y).

Also, for any real ), it holds Var(AX) = A\*Var(X).

o Given a random variable X € R™ with probability density wx, the
covariance of X is an n X n matrix with elements

Cov(X, X);; = / (i —T)(z; —Tj)rx(x)de € R, 1<14,5<n.

n

Alternatively, we can define the covariance using vector notation as

Cov(X,X) = / (x —7)(z — T) " 7wx(z)de € R™",

n
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@ The variance of the jth component X, of X is

Var(X;) = /R(xj — %)’ mx, (x;)dx;.

The jth diagonal entry of Cov(X, X) is

Cov(X, X);; :/ (z; — Tj)*rx (z)dz.

n

Exercise: Prove that
Var(X;) = Cov(X, X);;, 1<j<n.

e We also use the notation Var(X) to denote Cov(X, X).

Exercise: Prove that

Var(X) =E(X -Z)(X -2) ) =E(XX ") —Z% .
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Exercise: Given a nonzero vector v € R™ and a random variable
X € R"™, define the real-valued random variable

n
X, =v' X = Zizl i X

Compute the mean and variance of X,.

@ The covariance of a random variable X € R™ and a random
variable Y € R™ is the n x m matrix,

Cov(X,Y) =E(X —7)(Y =) ")
—E(XYT)-77,
where T and 7 are the means of X and Y respectively.

Exercise: Prove that

Cov(X,Y) = (Cov(Y,X))".
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6. Other properties of expectation, variance, and covariance

o [ is order preserving:
E(X)<E(Y), if X<Y.

o Cauchy—Schwarz inequality:
If X and Y have finite variances, then [E(XY')| < oo and

[E(XY)] < E(|XY]) < VE(X?)E(Y?).

In particular,
|Cov(X,Y)| < oxoy.

More generally, for random vectors X and Y, it holds

EXTY)| <E(XTY]) < VE(IXIPE(Y[?).
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e Jensen’s inequality: If v is a convex function, then

P(EX)) <E(P(X)).
In particular, |E(X)| < E(||X]|).
@ Chebyshev’s inequality: For any a > 0,

Var(X)

a2

P{X —E(X)| > a} <

o Cov is bilinear and shift invariant:
For any constants a and b and any c ,
Cov(aX 4+ bY +¢,Z) = aCov(X, Z) + bCov(Y, Z),
Cov(Z,aX +bY +¢) = aCov(Z,X) + bCov(Z,Y).
In particular,

Var(X £Y) = Var(X) + Var(Y) £ (Cov(X,Y) + Cov(Y, X)).
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o Covariance transformation:

For any matrices A and B (of appropriate sizes),
Cov(AX,BY) = ACov(X,Y)B'.
In particular,
Var(aX) = a®Var(X), Var(AX)= AVar(X)A'.

e Expectation of a quadratic form:
If E(X) =7, then

E(XTAX)=7"AT + tr(AVar(X)),

where tr denotes the trace of the matrix.
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7. Normal distributions

e A random variable X € R is normally distributed, or Gaussian,
indicated symbolically by

X ~ N(p,0?),

if its cumulative distribution is given by

P{X <1} — \/21? /too exp (—2%2@: _ u)2) da.

Hence, the Gaussian probability density is

(o) = s exp (o= w?).

We have
E(X)=p, Var(X)=oc%
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o Gaussian multivariate random variable X € R™:
X~N (Ma C)?

where 1 € R™ and C is a symmetric positive definite matrix.

The probability density is

mx(z) = N(z | u, C) /
1/2
(i) o (e -we o),

E(X)=pu, Var(X)=C.

We have

Exercise: Assume X ~ N (i, C). Prove that the n components X,
1 < j < n, of X are mutually independent Gaussian random
variables if and only if C is a diagonal matrix with positive
diagonal entries.
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o Affine transformations preserve multivariate Gaussianity:
If X € R" with X ~ N (u,C), A € R™*"™ and a € R™, then

Y =AX+a~N(Au+a,ACA").

e Random variables that are jointly Gaussian and uncorrelated are
also independent.

o Definition: X ~ N(0,1,,) is called a standard normal n-variate
random variable (also referred to as Gaussian white noise).

Exercise: Assume X ~ N(u,C) and C = RTR is a Cholesky
factorization. Prove that the random variable

Z=RT(X -p)

is a standard normal random variable. The above formula defines
a whitening transformation, or Mahalanobis transformation, of the
random variable X into Gaussian white noise.
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7.1 Conditional distributions of the Gaussian

o Let X ~ N (u,C). Any vector [Xj, --- X;w]T
components of X is Gaussian.

o Let
U pu Cu CUV]
x=101, u=|", c= .
[V} H [Nv] [CVU Cy,
We have E(U) = pu, E(V) = pv, Var(U) = Cy, Var(V) = Cy,
Cov(U,V) = Cypyy, Cov(V,U) = Cyy. Note that

made of different

U~N(uu,Cu), V ~N(uyv,Cv).
The conditional density of U given V' is N (uy v, Cyjyv), where
oy = CovCy' (V = pv) + o,

Cypy =Cu — CUVC‘_/ICVU. (Schur complement)

To summarize, all marginals and conditionals of a multivariate
Gaussian distribution are Gaussian.
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