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1. Elementary probabilities

The probability space: (Ω,B,P). Here, Ω is an abstract set called
the sample space. The set B (a σ-algebra) is a collection of subsets
of Ω, satisfying the following conditions:

(i) Ω ∈ B, and if A ∈ B, then Ω \A ∈ B,
(ii) if A1, A2, . . . ∈ B, then

󰁖∞
j=1Aj ∈ B.

We call the set B the event space, and the individual sets in it are
referred to as events. The probability measure P is a mapping

P : B → R, P(E) = probability of E, E ∈ B,

that must satisfying the following conditions:

(i) P(Ω) = 1, and for all E ∈ B, 0 ≤ P(E) ≤ 1,

(ii) if Aj ∈ B, j = 1, 2, . . . with Aj ∩Ak = ∅ whenever j ∕= k, then

P(
󰁖∞

j=1Aj) =
󰁓∞

j=1 P(Aj).
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It follows from the definition that

P(Ω \A) = 1− P(A),

which implies that P(∅) = 0. Moreover, if A1, A2 ∈ B and
A1 ⊂ A2 ⊂ Ω, then

P(A1) ≤ P(A2).

Two events, A and B, are independent, if

P(A ∩B) = P(A)P(B).

The conditional probability of A given B is the probability that A
happens provided that B happens,

P(A | B) =
P(A ∩B)

P(B)
, assuming that P(B) > 0.

Exercise: Prove that P(A | B) ≤ 1.
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It follows from the definition of independent events that, if A and
B are mutually independent, then

P(A | B) = P(A), P(B | A) = P(B).

Vice versa, if one of the above equalities holds, then by the
definition of conditional probabilities A and B must be
independent.

Bayes’ formula for elementary events.

Assume that P(A) > 0 and P(B) > 0. From

P(A | B) =
P(A ∩B)

P(B)
and P(B | A) =

P(A ∩B)

P(A)
,

we obtain

P(B | A) = P(A | B)P(B)

P(A)
.
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2. Probability distributions and densities

Given a sample space Ω, a real valued random variable X is a
mapping

X : Ω → R,

which assigns to each element of Ω a real value X(ω), such that for
every open set A ⊂ R, X−1(A) ∈ B. (X is a measurable function.)

We call x = X(ω), ω ∈ Ω, a realization of X.

For each A ⊂ R, we define

µX(A) = P(X−1(A)) = P{ω ∈ Ω : X(ω) ∈ A},

and call µX the probability distribution of X, i.e., µX(A) is the
probability of the event {ω ∈ Ω : X(ω) ∈ A}. The probability
distribution µX(A) measures the size of the subset of Ω mapped
onto A by the random variable X.
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We only consider simple cases, meaning that there exists a
function, the probability density πX of X, such that

µX(A) =

󰁝

A
πX(x)dx.

A function is a probability density if it satisfies the following two
conditions:

πX(x) ≥ 0,
󰁝

R
πX(x)dx = 1.

Any function satisfying the above conditions can be viewed as a
probability density of some random variable.
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The cumulative distribution function (cdf) of a real-valued random
variable is defined as

ΦX(x) =

󰁝 x

−∞
πX(x′)dx′ = P{X ≤ x}.

Observe that ΦX(x) is non-decreasing, and it satisfies

lim
x→−∞

ΦX(x) = 0, lim
x→∞

ΦX(x) = 1.

The definition of random variables can be generalized to cover
multidimensional state spaces. Given two real-valued random
variables X and Y , the joint probability distribution defined over
Cartesian products of sets is

µXY (A×B) = P(X−1(A) ∩ Y −1(B)) = P{X ∈ A, Y ∈ B},

the probability of the event that X ∈ A and, at the same time,
Y ∈ B, where A,B ⊂ R.

Data Analysis & Matrix Comp. Lecture 1 Xiamen University 7 / 32



Assuming that the probability distribution can be written as an
integral of the form

µXY (A×B) =

󰁝󰁝

A×B
πXY (x, y)dxdy,

the non-negative function πXY defines the joint probability density
of the random variables X and Y . We may define a
two-dimensional random variable,

Z =

󰀗
X
Y

󰀘
: Ω → R2,

and by approximating general two-dimensional sets by unions of
rectangles, we may write

P{Z ∈ B ⊂ R2} =

󰁝󰁝

B
πXY (x, y)dxdy =

󰁝

B
πZ(z)dz,

where we used the notation πXY (x, y) = πZ(z), and the integral
with respect to z is the two-dimensional integral, dz = dxdy.
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More generally, we define a multivariate random variable as a
measurable mapping

X =

󰀵

󰀹󰀷
X1
...

Xn

󰀶

󰀺󰀸 : Ω → Rn,

where each component Xi is a real-valued random variable. The
probability density of X is the joint probability density

πX = πX1X2···Xn : Rn → R+

of its components, satisfying

P{X ∈ B} = µX(B) =

󰁝

B
πX(x)dx, B ⊂ Rn.

The joint probability density πXY of two multivariate random
variables X : Ω → Rn and Y : Ω → Rm can be defined in the space
Rn+m analogously.
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The random variables X ∈ Rn and Y ∈ Rm are independent if

πXY (x, y) = πX(x)πY (y),

in agreement with the definition of independent events. This
formula gives us also a way to calculate the joint probability
density of two independent random variables.

Given two not necessarily independent random variables X ∈ Rn

and Y ∈ Rm with joint probability density πXY (x, y), the marginal
density of X is the probability of X when Y may take on any
value,

πX(x) =

󰁝

Rm

πXY (x, y)dy.

In other words, the marginal density of X is simply the probability
density of X without any thoughts about Y . The marginal of Y is
defined analogously by the formula

πY (y) =

󰁝

Rn

πXY (x, y)dx.
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Consider the last formula, and assume that πY (y) ∕= 0. Dividing
both sides by the scalar πY (y) gives the identity

󰁝

Rn

πXY (x, y)

πY (y)
dx = 1.

Since the integrand is a non-negative function, it defines a
probability density for X, for fixed y. We define the conditional
probability density of X given Y ,

πX|Y (x | y) = πXY (x, y)

πY (y)
, πY (y) ∕= 0.

With some caution, and in a rather cavalier way, one can interpret
πX|Y as the probability density of X, assuming that the random
variable Y takes on the value Y = y.
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The conditional density of Y given X is defined similarly as

πY |X(y | x) = πXY (x, y)

πX(x)
, πX(x) ∕= 0.

Observe that the symmetric roles of X and Y imply that

πXY (x, y) = πX|Y (x | y)πY (y) = πY |X(y | x)πX(x),

leading to the important identity known as Bayes’ formula for
probability densities,

πX|Y (x | y) =
πY |X(y | x)πX(x)

πY (y)
.
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3. Change of variables in probability densities

Assume that we have two real-valued random variables X, Z that
are related to each other through a functional relation

X = φ(Z),

where φ : R → R is a one-to-one mapping. For simplicity, assume
that φ is strictly increasing and differentiable, so that φ′(z) > 0. If
the probability density function πX of X is given, what is the
corresponding density πZ of Z?

First, note that since φ is increasing, for any values a < b, we have

a < Z < b if and only if a′ = φ(a) < φ(Z) = X < φ(b) = b′,

therefore
P{a′ < X < b′} = P{a < Z < b}.
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Equivalently, the probability density of Z satisfies

󰁝 b

a
πZ(z)dz =

󰁝 b′

a′
πX(x)dx.

Performing a change of variables in the integral on the right,

x = φ(z), dx =
dφ

dz
(z)dz,

we obtain 󰁝 b

a
πZ(z)dz =

󰁝 b

a
πX(φ(z))

dφ

dz
(z)dz.

This holds for all a and b, and therefore we arrive at the
conclusion that

πZ(z) = πX(φ(z))
dφ

dz
(z).
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In the derivation above, we assumed that φ was increasing. If it is
decreasing, the derivative is negative. In general, since the density
needs to be non-negative, we write

πZ(z) = πX(φ(z))

󰀏󰀏󰀏󰀏
dφ

dz
(z)

󰀏󰀏󰀏󰀏 .

The above reasoning for one-dimensional random variables can be
extended to multivariate random variables as follows. Let X ∈ Rn

and Z ∈ Rn be two random variables such that

X = φ(Z),

where φ : Rn → Rn is a one-to-one differentiable mapping.
Consider a set B ⊂ Rn, and let B′ = φ(B) ⊂ Rn be its image in
the mapping φ. Then we may write

󰁝

B
πZ(z)dz =

󰁝

B′
πX(x)dx.
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We perform the change of variables x = φ(z) in the latter integral,
remembering that

dx = |det(Dφ(z))|dz,

where Dφ(z) is the Jacobian of the mapping φ,

Dφ(z) =

󰀵

󰀹󰀷

∂φ1

∂z1
· · · ∂φ1

∂zn
...

. . .
...

∂φn

∂z1
· · · ∂φn

∂zn

󰀶

󰀺󰀸 ∈ Rn×n,

and its determinant, the Jacobian determinant, expresses the local
volume scaling of the mapping φ. Occasionally, the Jacobian
determinant is written in a suggestive form to make it formally
similar to the one-dimensional equivalent,

∂φ

∂z
= det(Dφ(z)).
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With this notation,

󰁝

B
πZ(z)dz =

󰁝

B′
πX(x)dx =

󰁝

B
πX(φ(z))

󰀏󰀏󰀏󰀏
∂φ

∂z

󰀏󰀏󰀏󰀏 dz

for all B ⊂ Rn, and we arrive at the conclusion that

πZ(z) = πX(φ(z))

󰀏󰀏󰀏󰀏
∂φ

∂z

󰀏󰀏󰀏󰀏 .

This is the change of variables formula for probability densities.
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4. Expectation

Given a random variable X ∈ R with probability density πX , its
expected value, or mean, is defined as

E(X) = x =

󰁝

R
xπX(x)dx ∈ R.

Given a random variable X ∈ Rn with probability density πX , and
a function f : Rn → R, we define the expectation of f(X) as

E(f(X)) =

󰁝

Rn

f(x)πX(x)dx.

Exercise: If two random variables X and Y are independent then

E(XY ) = E(X)E(Y ).

Linearity: for any random variables X and Y , and any λ ∈ R,

E(X + Y ) = E(X) + E(Y ), E(λX) = λE(X).
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Given a random variable X ∈ Rn with probability density πX , the
mean of X is the vector in Rn,

x =

󰁝

Rn

xπX(x)dx =

󰀵

󰀹󰀷
x1
...
xn

󰀶

󰀺󰀸 ∈ Rn,

or, component-wise,

xj =

󰁝

Rn

xjπX(x)dx ∈ R, 1 ≤ j ≤ n.

Exercise: Prove that the jth component of the expectation of a
multivariate random variable X ∈ Rn can be calculated by using
the corresponding marginal density. That is to say,

xj =

󰁝

R
xjπXj (xj)dxj = E(Xj), 1 ≤ j ≤ n.
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4.1 Markov’s inequality

Let X be a non-negative random variable. For any α > 0,

P{X ≥ α} ≤ E(X)

α
.

Proof. For any α > 0, define the following function

f(x) =

󰀝
1, if x ≥ α,
0, otherwise.

Then f(x) ≤ x/α, which yields E(f(X)) ≤ E(X)/α. It follows
from

E(f(X)) = 1 · P{X ≥ α}+ 0 · P{X < α} = P{X ≥ α}

that

P{X ≥ α} ≤ E(X)

α
.
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4.2 Conditional expectation

Given two random variables X ∈ Rn and Y ∈ Rm, we define

E(X | y) =
󰁝

Rn

xπX|Y (x | y)dx.

Compute the expectation of X via its conditional expectation:

E(X) =

󰁝

Rn

xπX(x)dx =

󰁝

Rn

x

󰀕󰁝

Rm

πXY (x, y)dy

󰀖
dx

=

󰁝

Rn

x

󰀕󰁝

Rm

πX|Y (x | y)πY (y)dy
󰀖
dx

=

󰁝

Rm

󰀕󰁝

Rn

xπX|Y (x | y)dx
󰀖
πY (y)dy

=

󰁝

Rm

E(X | y)πY (y)dy = E(E(X | Y )).

This is the law of total expectation: E(X) = E(E(X | Y )).
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5. Variance and covariance

The variance of the random variable X is the expectation of the
squared deviation from the expectation,

Var(X) = E((X − x)2) = σ2
X =

󰁝

R
(x− x)2πX(x)dx.

The square root σX of the variance is the standard deviation of X.
Obviously, it holds Var(X) = E(X2)− x2 ≤ E(X2).

The kth moment of a probability density function is defined as

E((X − x)k) =

󰁝

R
(x− x)kπX(x)dx.

The skewness and the kurtosis of the probability density are

skew(X) =
E((X − x)3)

σ3
X

, kurt(X) =
E((X − x)4)

σ4
X

.
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The covariance of two random variables X and Y is defined as

Cov(X,Y ) = E((X − x)(Y − y)).

X and Y are said to be uncorrelated if Cov(X,Y ) = 0.

If the random variables X and Y are independent, then

Cov(X,Y ) = 0 and Var(X + Y ) = Var(X) + Var(Y ).

Also, for any real λ, it holds Var(λX) = λ2Var(X).

Given a random variable X ∈ Rn with probability density πX , the
covariance of X is an n× n matrix with elements

Cov(X,X)ij =

󰁝

Rn

(xi − xi)(xj − xj)πX(x)dx ∈ R, 1 ≤ i, j ≤ n.

Alternatively, we can define the covariance using vector notation as

Cov(X,X) =

󰁝

Rn

(x− x)(x− x)⊤πX(x)dx ∈ Rn×n.
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The variance of the jth component Xj of X is

Var(Xj) =

󰁝

R
(xj − xj)

2πXj (xj)dxj .

The jth diagonal entry of Cov(X,X) is

Cov(X,X)jj =

󰁝

Rn

(xj − xj)
2πX(x)dx.

Exercise: Prove that

Var(Xj) = Cov(X,X)jj , 1 ≤ j ≤ n.

We also use the notation Var(X) to denote Cov(X,X).

Exercise: Prove that

Var(X) = E((X − x)(X − x)⊤) = E(XX⊤)− xx⊤.
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Exercise: Given a nonzero vector v ∈ Rn and a random variable
X ∈ Rn, define the real-valued random variable

Xv = v⊤X =
󰁛n

i=1
viXi.

Compute the mean and variance of Xv.

The covariance of a random variable X ∈ Rn and a random
variable Y ∈ Rm is the n×m matrix,

Cov(X,Y ) = E((X − x)(Y − y)⊤)

= E(XY ⊤)− xy⊤,

where x and y are the means of X and Y respectively.

Exercise: Prove that

Cov(X,Y ) = (Cov(Y,X))⊤.
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6. Other properties of expectation, variance, and covariance

E is order preserving:

E(X) ≤ E(Y ), if X ≤ Y.

Cauchy–Schwarz inequality:

If X and Y have finite variances, then |E(XY )| < ∞ and

|E(XY )| ≤ E(|XY |) ≤
󰁳

E(X2)E(Y 2).

In particular,
|Cov(X,Y )| ≤ σXσY .

More generally, for random vectors X and Y , it holds

|E(X⊤Y )| ≤ E(|X⊤Y |) ≤
󰁳

E(󰀂X󰀂2)E(󰀂Y 󰀂2).
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Jensen’s inequality: If ψ is a convex function, then

ψ(E(X)) ≤ E(ψ(X)).

In particular, 󰀂E(X)󰀂 ≤ E(󰀂X󰀂).
Chebyshev’s inequality: For any α > 0,

P{|X − E(X)| ≥ α} ≤ Var(X)

α2
.

Cov is bilinear and shift invariant:

For any constants a and b and any c ,

Cov(aX + bY + c, Z) = aCov(X,Z) + bCov(Y, Z),

Cov(Z, aX + bY + c) = aCov(Z,X) + bCov(Z, Y ).

In particular,

Var(X ± Y ) = Var(X) + Var(Y )± (Cov(X,Y ) + Cov(Y,X)).
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Covariance transformation:

For any matrices A and B (of appropriate sizes),

Cov(AX,BY ) = ACov(X,Y )B⊤.

In particular,

Var(aX) = a2Var(X), Var(AX) = AVar(X)A⊤.

Expectation of a quadratic form:

If E(X) = x, then

E(X⊤AX) = x⊤Ax+ tr(AVar(X)),

where tr denotes the trace of the matrix.
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7. Normal distributions

A random variable X ∈ R is normally distributed, or Gaussian,
indicated symbolically by

X ∼ N (µ,σ2),

if its cumulative distribution is given by

P{X ≤ t} =
1√
2πσ2

󰁝 t

−∞
exp

󰀕
− 1

2σ2
(x− µ)2

󰀖
dx.

Hence, the Gaussian probability density is

πX(x) =
1√
2πσ2

exp

󰀕
− 1

2σ2
(x− µ)2

󰀖
.

We have
E(X) = µ, Var(X) = σ2.
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Gaussian multivariate random variable X ∈ Rn:

X ∼ N (µ,C),

where µ ∈ Rn and C is a symmetric positive definite matrix.

The probability density is

πX(x) = N (x | µ,C)

=

󰀕
1

(2π)ndet(C)

󰀖1/2

exp

󰀕
−1

2
(x− µ)⊤C−1(x− µ)

󰀖
.

We have
E(X) = µ, Var(X) = C.

Exercise: Assume X ∼ N (µ,C). Prove that the n components Xj ,
1 ≤ j ≤ n, of X are mutually independent Gaussian random
variables if and only if C is a diagonal matrix with positive
diagonal entries.
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Affine transformations preserve multivariate Gaussianity:
If X ∈ Rn with X ∼ N (µ,C), A ∈ Rm×n and a ∈ Rm, then

Y = AX + a ∼ N (Aµ+ a,ACA⊤).

Random variables that are jointly Gaussian and uncorrelated are
also independent.

Definition: X ∼ N (0, In) is called a standard normal n-variate
random variable (also referred to as Gaussian white noise).

Exercise: Assume X ∼ N (µ,C) and C = R⊤R is a Cholesky
factorization. Prove that the random variable

Z = R−⊤(X − µ)

is a standard normal random variable. The above formula defines
a whitening transformation, or Mahalanobis transformation, of the
random variable X into Gaussian white noise.
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7.1 Conditional distributions of the Gaussian

Let X ∼ N (µ,C). Any vector
󰀅
Xk1 · · · Xkℓ

󰀆⊤
made of different

components of X is Gaussian.

Let

X =

󰀗
U
V

󰀘
, µ =

󰀗
µU

µV

󰀘
, C =

󰀗
CU CUV

CV U CV ,

󰀘
.

We have E(U) = µU , E(V ) = µV , Var(U) = CU , Var(V ) = CV ,
Cov(U, V ) = CUV , Cov(V, U) = CV U . Note that

U ∼ N (µU ,CU ), V ∼ N (µV ,CV ).

The conditional density of U given V is N (µU |V ,CU |V ), where

µU |V = CUV C
−1
V (V − µV ) + µU ,

CU |V = CU −CUV C
−1
V CV U . (Schur complement)

To summarize, all marginals and conditionals of a multivariate
Gaussian distribution are Gaussian.
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